4.1.1.1.1.6. lib.data_handling.data_postprocessing#

Module that provides functionality in order to postprocess data.

@author: Thomas Arne Hensel, 2023

4.1.1.1.1.6.1. Module Contents#

4.1.1.1.1.6.1.1. Classes#

PostProcessorFacade

Class to post-process data.

PostProcessor

Class to post-process data.

MetaAnalysis

4.1.1.1.1.6.1.2. Functions#

postprocess_single_file

Post process fitting results from an experiment.

process_group

Process a group by calculating the normalized distance ‘d_norm’.

4.1.1.1.1.6.1.3. API#

lib.data_handling.data_postprocessing.postprocess_single_file(full_file_path)#

Post process fitting results from an experiment.

Parameters:

full_file_path (str) – Full path to the fitting results file.

Returns:

Dictionary containing processed results.

Return type:

dict

lib.data_handling.data_postprocessing.process_group(group)#

Process a group by calculating the normalized distance ‘d_norm’.

Parameters:

group (pandas.DataFrame) – Pandas DataFrame group.

Returns:

Processed group.

Return type:

pandas.DataFrame

class lib.data_handling.data_postprocessing.PostProcessorFacade(collect_artefacts=True)#

Class to post-process data.

Operates only on results of a study, no reference to the experiment object.

Initialization

Initialize the PostProcessorFacade.

Parameters:

collect_artefacts (bool) – Whether to collect artefacts during postprocessing.

postprocess_data(input_dir, output_dir, max_files=10**4)#

Multi-threaded postprocessing of the data.

Parameters:
  • input_dir (str) – Root directory of the input data.

  • output_dir (str) – Root directory of the output data.

  • max_files (int) – Maximum number of files to process.

_convert_results_to_df(result_dict)#

Convert post-processed results dictionary to a DataFrame.

Parameters:

result_dict (dict) – Post-processed results dictionary.

Returns:

DataFrame containing post-processed results.

Return type:

pandas.DataFrame

class lib.data_handling.data_postprocessing.PostProcessor#

Class to post-process data.

Operates only on results of a study, no reference to the experiment object.

Initialization

process_results(dir, result_dict)#

Method to post-process results from a study. 1. Cluster positions and retrieve means. 2. Compare result to ground truth if available. 3. Calculate CRB either for true or for estimated position.

Parameters:
  • dir (str) – Directory of results file. Look here for source to calculate CRB.

  • result_dict (dict) – Dictionary containing results from the study.

Returns:

Processed results and success status.

Return type:

tuple(dict, bool)

get_even_clusters(pos, anchor=None)#

Method for K-means clustering with even cluster-size.

Parameters:

pos – Positions in shape (K, M, dim) for N estimates of M molecules in dim dimensions.

[ [[x1, y1, …], [x2, y2, …], …, [xM, yM, …]], [], …, [n-th estimate] ] :type pos: numpy.ndarray :param anchor: Anchor point for clustering (default is None). :type anchor: numpy.ndarray, optional :return: Ordered positions in shape (M, K, dim). :rtype: numpy.ndarray

class lib.data_handling.data_postprocessing.MetaAnalysis#

Initialization

meta_analysis(new_base_dir)#

Visualize overarching statistics and batch-dependent characteristics of all analyzed data.

Parameters:

new_base_dir (str) – The base directory for saving analysis results.